Tamoxifen decreases extracellular TGF-beta1 secreted from breast cancer cells--a post-translational regulation involving matrix metalloproteinase activity.

نویسندگان

  • Ulrika W Nilsson
  • Jill A Jönsson
  • Charlotta Dabrosin
چکیده

Transforming growth factor-beta1 (TGF-beta1) promotes cancer progression by regulating tumor cell growth and angiogenesis and high levels of TGF-beta1 have been associated with metastatic disease and poor prognosis in breast cancer patients. We have previously reported anti-angiogenic effects of the anti-estrogen tamoxifen in breast cancer, by increased matrix metalloproteinase-9 (MMP-9) activity and generation of endostatin. Here, we show that exposure of tamoxifen to ER-positive breast cancer cells for 7 days, decreased extracellular TGF-beta1. Intracellular TGF-beta1 levels were unaffected by tamoxifen treatment, indicating a post-translational regulation of TGF-beta1. Inhibition of MMP activity restored TGF-beta1 levels, suggesting an involvement of MMP activities in the down-regulation of TGF-beta1 by tamoxifen. Moreover, using an in vivo model of solid MCF-7 tumors in nude mice, we analyzed tumor levels of TGF-beta1 after in vivo treatment with estradiol and tamoxifen. Exposure of tumor-bearing mice to tamoxifen significantly decreased tumor TGF-beta1 protein levels, tumor growth and angiogenesis. In conclusion, our findings suggest a novel mechanism of action of tamoxifen in breast cancer via sex steroid dependent modulation of the proteolytic tumor microenvironment resulting in reduced extracellular TGF-beta1 levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases.

As growth plate chondrocytes mature and hypertrophy, they reorganize their proteoglycan-rich type II collagen extracellular matrix (ECM), involving 1,25(OH)(2)D(3)-dependent regulation of matrix metalloproteinases (MMPs). Stromelysin-1 (MMP-3) and 72-kD gelatinase (MMP-2) are found in extracellular matrix vesicles (MVs) and release and activate ECM-bound latent TGF-beta1 and TGF-beta2, respecti...

متن کامل

Extracellular matrix-mediated membrane-type 1 matrix metalloproteinase expression in pancreatic ductal cells is regulated by transforming growth factor-beta1.

Pancreatic ductal adenocarcinoma (PDAC) is associated with an intense fibrotic reaction around the tumor known as desmoplastic reaction. This tissue is composed of interstitial matrix, predominantly type I collagen, together with proliferating fibroblastic cells. Despite the recognized importance of tumor-stromal interactions, very little is known about the interactions among pancreatic cells, ...

متن کامل

Functional live-cell imaging demonstrates that beta1-integrin promotes type IV collagen degradation by breast and prostate cancer cells.

The ability of tumor cells to adhere to, migrate on, and remodel extracellular matrices is mediated by cell surface receptors such as beta1-integrins. Here we conducted functional live-cell imaging in real time to investigate the effects of modulating beta1-integrin expression and function on proteolytic remodeling of the extracellular matrix. Human breast and prostate cancer cells were grown o...

متن کامل

Novel regulation of type IV collagenase (matrix metalloproteinase-9 and -2) activities by transforming growth factor-beta1 in human prostate cancer cell lines.

The type IV collagenases/gelatinases matrix metalloproteinase-2 (MMP-2) and MMP-9 play a variety of important roles in both physiological and pathological processes and are regulated by various growth factors, including transforming growth factor-beta1 (TGF-beta1), in several cell types. Previous studies have suggested that cellular control of one or both collagenases can occur through direct t...

متن کامل

Transforming growth factor-beta is a potent inhibitor of extracellular matrix degradation by cultured human mesangial cells.

Accumulation of the glomerular extracellular matrix (ECM) is a pivotal event in the progression from acute glomerular injury to end-stage renal disease. Although enhanced ECM synthesis has been demonstrated to contribute to ECM accumulation, the role of decreased ECM degradation is largely unknown. It was previously shown that glomerular ECM degradation is mediated by a plasminogen activator (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental cell research

دوره 315 1  شماره 

صفحات  -

تاریخ انتشار 2009